Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
PLoS One ; 19(4): e0298325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578803

RESUMO

Surveillance methods of circulating antibiotic resistance genes (ARGs) are of utmost importance in order to tackle what has been described as one of the greatest threats to humanity in the 21st century. In order to be effective, these methods have to be accurate, quickly deployable, and scalable. In this study, we compare metagenomic shotgun sequencing (TruSeq DNA sequencing) of wastewater samples with a state-of-the-art PCR-based method (Resistomap HT-qPCR) on four wastewater samples that were taken from hospital, industrial, urban and rural areas. ARGs that confer resistance to 11 antibiotic classes have been identified in these wastewater samples using both methods, with the most abundant observed classes of ARGs conferring resistance to aminoglycoside, multidrug-resistance (MDR), macrolide-lincosamide-streptogramin B (MLSB), tetracycline and beta-lactams. In comparing the methods, we observed a strong correlation of relative abundance of ARGs obtained by the two tested methods for the majority of antibiotic classes. Finally, we investigated the source of discrepancies in the results obtained by the two methods. This analysis revealed that false negatives were more likely to occur in qPCR due to mutated primer target sites, whereas ARGs with incomplete or low coverage were not detected by the sequencing method due to the parameters set in the bioinformatics pipeline. Indeed, despite the good correlation between the methods, each has its advantages and disadvantages which are also discussed here. By using both methods together, a more robust ARG surveillance program can be established. Overall, the work described here can aid wastewater treatment plants that plan on implementing an ARG surveillance program.


Assuntos
Antibacterianos , Águas Residuárias , Antibacterianos/farmacologia , Antibacterianos/análise , Genes Bacterianos , Tetraciclina/análise , Resistência Microbiana a Medicamentos/genética
2.
J Environ Manage ; 357: 120830, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583383

RESUMO

Greenhouse gases (GHGs) emissions due to increasing energy demand have raised the need to identify effective solutions to produce clean and renewable energy. Biotechnologies are an effective platform to attain green transition objectives, especially when synergically integrated to promote health and environmental protection. In this context, microalgae-based biotechnologies are considered among the most effective tools for treating gaseous effluents and simultaneously capturing carbon sources for further biomass valorisation. The production of biodiesel is regarded as a promising avenue for harnessing value from residual algal biomass. Nonetheless, the existing techniques for extracting lipids still face certain limitations, primarily centred around the cost-effectiveness of the process.This study is dedicated to developing and optimising an innovative and cost-efficient technique for extracting lipids from algal biomass produced during gaseous emissions treatment based on algal-bacterial biotechnology. This integrated treatment technology combines a bio-scrubber for degrading gaseous contaminants and a photobioreactor for capturing the produced CO2 within valuable algal biomass. The cultivated biomass is then processed with the process newly designed to extract lipids simultaneously transesterificated in fatty acid methyl esters (FAME) via In Situ Transesterification (IST) with a Kumagawa-type extractor. The results of this study demonstrated the potential application of the optimised method to overcome the gap to green transition. Energy production was obtained from residuals produced during the necessary treatment of gaseous emissions. Using hexane-methanol (v/v = 19:1) mixture in the presence KOH in Kumagawa extractor lipids were extracted with extraction yield higher than 12% and converted in fatty acid methyl esters. The process showed the enhanced extraction of lipids converted in bio-sourced fuels with circular economy approach, broadening the applicability of biotechnologies as sustainable tools for energy source diversification.


Assuntos
Lipídeos , Microalgas , Biocombustíveis , Promoção da Saúde , Ácidos Graxos , Gases , Biomassa , Ésteres
3.
ACS Appl Mater Interfaces ; 16(13): 16271-16289, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38514254

RESUMO

Significant progress has been made in designing advanced membranes; however, persistent challenges remain due to their reduced permeation rates and a propensity for substantial fouling. These factors continue to pose significant barriers to the effective utilization of membranes in the separation of oil-in-water emulsions. Metal-organic frameworks (MOFs) are considered promising materials for such applications; however, they encounter three key challenges when applied to the separation of oil from water: (a) lack of water stability; (b) difficulty in producing defect-free membranes; and (c) unresolved issue of stabilizing the MOF separating layer on the ceramic membrane (CM) support. In this study, a defect-free hydrolytically stable zirconium-based MOF separating layer was formed through a two-step method: first, by in situ growth of UiO-66-NH2 MOF into the voids of polydopamine (PDA)-functionalized CM during the solvothermal process, and then by facilitating the self-assembly of UiO-66-NH2 with PDA using a pressurized dead-end assembly. A stable MOF separating layer was attained by enriching the ceramic support with amines and hydroxyl groups using PDA, which assisted in the assembly and stabilization of UiO-66-NH2. The PDA-s-UiO-66-NH2-CM membrane displayed air superhydrophilicity and underwater superoleophobicity, demonstrating its oil resistance and high antifouling behavior. The PDA-s-UiO-66-NH2-CM membrane has shown exceptionally high permeability and separation capacity for challenging oil-in-water emulsions. This is attributed to numerous nanochannels from the membrane and its high resistance to oil adhesion. The membranes showed excellent stability over 15 continuous test cycles, which indicates that the developed MOFs separating layers have a low tendency to be clogged by oil droplets during separation. Machine learning-based Gaussian process regression (GPR) models as nonparametric kernel-based probabilistic models were employed to predict the performance efficiency of the PDA-s-UiO-66-NH2-CM membrane in oil-in-water separation. The outcomes were compared with the support vector machine (SVM) and decision tree (DT) algorithm. This efficiency includes various metrics related to its separation accuracy, and the models were developed through feature engineering to identify and utilize the most significant factors affecting the membrane's performance. The results proved the reliability of GPR optimization with the highest prediction accuracy in the validation phase. The average percentage increase of the GPR model compared to the SVM and DT model was 6.11 and 42.94%, respectively.

4.
MethodsX ; 12: 102582, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38357632

RESUMO

Control and prevention of environmental pollution have emerged as paramount global concerns. Anthropogenic activities, such as industrial discharges, agricultural runoff, and improper waste disposal, introduce a wide range of contaminants into various ecosystems. These pollutants encompass organic and inorganic compounds, particulates, microorganisms, and disinfection by-products, posing severe threats to human health, ecosystems, and the environment. Effective monitoring methods are indispensable for assessing environmental quality, identifying pollution sources, and implementing remedial measures. This paper suggests that the development and utilization of highly advanced analytical tools are both essential for the analysis of contaminants in water samples, presenting a foundational hypothesis for the review. This paper comprehensively reviews the development and utilization of highly advanced analytical tools which is mandatory for the analysis of contaminants in water samples. Depending on the specific pollutants being studied, the choice of analytical methods widely varies. It also reveals insights into the diverse applications and effectiveness of these methods in assessing water quality and contaminant levels. By emphasizing the critical role of the reviewed monitoring methods, this review seeks to deepen the understanding of pollution challenges and inspire innovative monitoring solutions that contribute to a cleaner and more sustainable global environment.•Urgent global concerns: control and prevention of pollution from diverse sources.•Varied contaminants, diverse methods: comprehensive review of analytical tools.•Inspiring a sustainable future: innovative monitoring for a cleaner environment.

5.
Chemosphere ; 349: 140801, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029934

RESUMO

Wastewater treatment technologies have been developed to address the health and environmental risks associated with toxic and cancer-causing dyes and heavy metals found in industrial waste. The most commonly used method to mitigate and treat such effluents is adsorption, which is favored for its high efficiency, low costs, and ease of operation. However, traditional adsorbents have limitations in terms of regeneration and selectivity compared to smart adsorbents. Smart polymeric adsorbents, on the other hand, can undergo physical and chemical changes in response to external factors like temperature and pH, enabling a selective adsorption process. These adsorbents can be easily regenerated and reused with minimal generation of secondary pollutants during desorption. The unique properties acquired by stimuli-responsive adsorbents have encouraged researchers to investigate their potential for the selective and efficient removal of organic dyes and heavy metals. This comprehensive review focuses on two common stimuli, pH and temperature, discussing the fabrication methods and characteristics of smart adsorbents responsive to these factors. It also provides an overview of the mechanisms, isotherms, kinetics, and thermodynamics of the adsorption process for each type of stimuli-responsive adsorbent. Finally, the review concludes with discussions on future perspectives and considerations.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Temperatura , Adsorção , Termodinâmica , Corantes , Polímeros , Cinética , Purificação da Água/métodos , Concentração de Íons de Hidrogênio
6.
Sci Total Environ ; 912: 168715, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38008330

RESUMO

Water contamination caused by heavy metals, nutrients, and organic pollutants of varying particle sizes originating from domestic and industrial processes poses a significant global challenge. There is a growing concern, particularly regarding the presence of heavy metals in freshwater sources, as they can be toxic even at low concentrations, posing risks to human health and the environment. Currently, membrane technologies are recognized as effective and practical for treating domestic and industrial wastewater. However, these technologies are hindered by fouling issues. Furthermore, the utilization of conventional membranes leads to the accumulation of non-recyclable synthetic polymers, commonly used in their production, resulting in adverse environmental consequences. In light of our previously published studies on environmentally friendly, biodegradable polylactic acid (PLA) nanocomposite mixed matrix membranes (MMMs), we selected two top-performing PLA-based ultrafiltration nanocomposite membranes: one negatively charged (PLA-M-) and one positively charged (PLA-M+). We integrated these membranes into systems with varying arrangements to control fouling and eliminate heavy metals, organic pollutants, and nutrients from raw municipal wastewater collected by the local wastewater treatment plant in Abu Dhabi (UAE). The performance of two integrated systems (i.e., PLA-M+/PLA-M- and PLA-M-/PLA-M+) was compared in terms of permeate flux, contaminant removal efficiencies, and fouling mitigation. The PLA-M+/PLA-M- system achieved removal efficiencies of 79.6 %, 92.6 %, 88.7 %, 85.2 %, 98.9 %, 94 %, 83.3 %, and 98.3 % for chemical oxygen demand (COD), nitrate (NO3--N), phosphate (PO43--P), ammonium (NH4+-N), iron (Fe), zinc (Zn), nickel (Ni), and copper (Cu), respectively. On the other hand, the PLA-M-/PLA-M+ system recorded removal efficiencies of 85.8 %, 95.9 %, 100 %, 81.9 %, 99.3 %, 91.9 %, 72.9 %, and 98.9 % for COD, NO3--N, PO43--P, NH4+-N, Fe, Zn, Ni, and Cu, respectively. Notably, the PLA-M-/PLA-M+ system demonstrated superior antifouling resistance, making it the preferred integrated system. These findings demonstrate the potential of eco-friendly PLA nanocomposite UF-MMMs as a promising alternative to petroleum-based polymeric membranes for efficient and sustainable wastewater treatment.

7.
ACS Omega ; 8(42): 38828-38838, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901569

RESUMO

CuFe2O4 nanoparticles were synthesized and immobilized on sepiolite fibers and graphene oxide sheets, producing a CuFe2O4/sepiolite/GO (CFSG) nanocomposite via a facile single-pot method. The synthesized nanocomposite was characterized using TEM, FTIR, SEM-EDX, XRD, and TGA techniques to determine its composition, structure, and thermal stability. The adsorptive removal of Pb(II) and Cd(II) heavy metal ions from aqueous solutions was studied using the synthesized CFSG nanocomposite. Adsorption parameters such as CFSG loading, pH, contact time, and temperature were investigated. The CFGS nanocomposite showed a higher Pb(II) removal (qm = 238.1 mg/g) compared to Cd(II) (qm = 14.97 mg/g) in a Pb(II) and Cd(II) binary system. The Pb(II) and Cd(II) adsorption fitted well with the Langmuir model, followed by the pseudo-second-order model, and was found spontaneous. Adsorption thermodynamic analysis showed that the Pb(II) adsorption process was exothermic while Cd(II) adsorption was endothermic. The CuFe2O4 nanoparticles on the CFSG surface could facilitate the adsorption of heavy metal ions through electrostatic interaction and complexation processes.

8.
Chemosphere ; 343: 140224, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37734506

RESUMO

The overuse of plastics has led to a large influx of microplastics (MPs) in water bodies and water/wastewater treatment plants. Coupled with the ongoing water crisis, this poses a threat to freshwater availability as MPs disrupt the operation of these plants. MPs cause severe fouling of low-pressure membrane technologies such as ultrafiltration (UF) due to the strong adhesion between MPs and the membrane surface. An electrified membrane-based technology is suggested as an alternative MP fouling mitigation strategy. In this study, composite membranes of sulfonated polyethersulfone (SPES)/MXene (Ti3C2Tx) were fabricated and evaluated as a promising candidate for mitigating fouling of MPs. The described SPES/Ti3C2Tx composite membrane was designed to improve important physiochemical properties such as conductivity without affecting water flux. The membranes were tested under different electrical potentials to find an optimal strategy to reduce MP fouling. The performance tests showed that the flux increased from 42 L m-2. h-1 at 0 V to 49 L m-2. h-1 at 2 V due to electrostatic repulsion when 5 wt% Ti3C2Tx was used as a result of the applied electric potential. In addition, it was shown that intermittent applied voltage using "30 min ON: 60 min OFF" mode resulted in more stable water flux due to in-situ coagulant formation and cleaning. This study illustrates the potential of MXene-based membranes for mitigating MP fouling and paves the way for future research on membrane materials that can enhance system performance.


Assuntos
Plásticos , Purificação da Água , Microplásticos , Titânio , Membranas Artificiais , Ultrafiltração/métodos , Purificação da Água/métodos
9.
Ultrason Sonochem ; 98: 106514, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37421845

RESUMO

The aim of this study is to develop an environmentally friendly and effective method for the extraction of nutritious date sugar using natural deep eutectic solvents (NADES) and ultrasound-assisted extraction (USAE). The careful design of a suitable NADES-USAE system was systematically supported by COSMO-RS screening, response surface method (RSM) and artificial neural network (ANN). Initially, 26 natural hydrogen bond donors (HBDs) were carefully screened for sugar affinity using COSMO-RS. The best performing HBDs were then used for the synthesis of 5 NADES using choline chloride (ChCl) as HBA. Among the synthesized NADES, the mixture of ChCl, citric acid (CA) and water (1:1:1 with 20 wt% water) resulted in the highest sugar yield of 78.30 ± 3.91 g/100 g, which is superior to conventional solvents such as water (29.92 ± 1.50 g/100 g). Further enhancements using RSM and ANN led to an even higher sugar recovery of 87.81 ± 2.61 g/100 g, at conditions of 30 °C, 45 min, and a solvent to DFP ratio of 40 mL/g. The method NADES-USAE was then compared with conventional hot water extraction (CHWE) (61.36 ± 3.06) and showed 43.1% higher sugar yield. The developed process not only improves the recovery of the nutritious date sugar but also preserves the heat-sensitive bioactive compounds in dates, making it an attractive alternative to CHWE for industrial utilization. Overall, this study shows a promising approach for the extraction of nutritive sugars from dates using environmentally friendly solvents and advanced technology. It also highlights the potential of this approach for valorizing underutilized fruits and preserving their bioactive compounds.


Assuntos
Solventes Eutéticos Profundos , Açúcares , Ultrassom , Extratos Vegetais/química , Solventes/química , Água/química , Colina/química
10.
Chemosphere ; 337: 139431, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37422217

RESUMO

Exploration and transportation of oil offshore can result in oil spills that cause a wide range of adverse environmental consequences and destroy aquatic life. Membrane technology outperformed the conventional procedures for oil emulsion separation due to its improved performance, reduced cost, removal capacity, and greater eco-friendly. In this study, a hydrophobic iron oxide-oleylamine (Fe-Ol) nanohybrid was synthesized and incorporated into polyethersulfone (PES) to prepare novel PES/Fe-Ol hydrophobic ultrafiltration (UF) mixed matrix membranes (MMMs). Several characterization techniques were performed to characterize the synthesized nanohybrid and fabricated membranes, including scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), contact angle, and zeta potential. The membranes' performance was assessed using a surfactant-stabilized (SS) water-in-hexane emulsion as a feed and a dead-end vacuum filtration setup. The incorporation of the nanohybrid enhanced the hydrophobicity, porosity, and thermal stability of the composite membranes. At 1.5 wt% Fe-Ol nanohybrid, the modified PES/Fe-Ol MMM membranes reported high water rejection efficiency of 97.4% and 1020.4 LMH filtrate flux. The re-usability and antifouling properties of the membrane were examined over five filtration cycles, demonstrating its great potential for use in water-in-oil separation.


Assuntos
Ultrafiltração , Água , Ultrafiltração/métodos , Água/química , Emulsões , Espectroscopia de Infravermelho com Transformada de Fourier , Membranas Artificiais , Interações Hidrofóbicas e Hidrofílicas
11.
Emerg Microbes Infect ; 12(2): 2222850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37279167

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in wastewater. Wastewater-based epidemiology (WBE) is a practical and cost-effective tool for the assessment and controlling of pandemics and probably for examining SARS-CoV-2 presence. Implementation of WBE during the outbreaks is not without limitations. Temperature, suspended solids, pH, and disinfectants affect the stability of viruses in wastewater. Due to these limitations, instruments and techniques have been utilized to detect SARS-CoV-2. SARS-CoV-2 has been detected in sewage using various concentration methods and computer-aided analyzes. RT-qPCR, ddRT-PCR, multiplex PCR, RT-LAMP, and electrochemical immunosensors have been employed to detect low levels of viral contamination. Inactivation of SARS-CoV-2 is a crucial preventive measure against coronavirus disease 2019 (COVID-19). To better assess the role of wastewater as a transmission route, detection, and quantification methods need to be refined. In this paper, the latest improvements in quantification, detection, and inactivation of SARS-CoV-2 in wastewater are explained. Finally, limitations and future research recommendations are thoroughly described.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Águas Residuárias , Água , Imunoensaio
12.
Sci Total Environ ; 887: 163785, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37149161

RESUMO

Wastewater-based epidemiology (WBE) demonstrates an efficient tool to monitor and predict SARS-CoV-2 community distribution. Many countries across the world have adopted the technique, however, most of these studies were conducted for a short duration with a limited sampling size. In this study, long-term reliability and quantification of wastewater SARS-CoV-2 surveillance is reported via analyzing 16,858 samples collected from 453 different locations across the United Arab Emirates (UAE) from May 2020 to June 2022. The collected composite samples were first incubated at 60 °C followed by filtration, concentration, and then RNA extraction using commercially available kits. The extracted RNA was then analyzed by one-step RT-qPCR and RT-ddPCR, and the data was compared to the reported clinical cases. The average positivity rate in the wastewater samples was found to be 60.61 % (8.41-96.77 %), however, the positivity rate obtained from the RT-ddPCR was significantly higher than the RT-qPCR suggesting higher sensitivity of RT-ddPCR. Time-lagged correlation analysis indicated an increase in positive cases in the wastewater samples when the clinical positive cases declined suggesting that wastewater data are highly affected by the unreported asymptomatic, pre-symptomatic and recovering individuals. The weekly SARS-CoV-2 viral count in the wastewater samples are positively correlated with the diagnosed new clinical cases throughout the studied period and the studied locations. Viral count in wastewater peaked approximately one to two weeks prior to the peaks appearing in active clinical cases indicating that wastewater viral concentrations are effective in predicting clinical cases. Overall, this study further confirms the long-term sensitivity and robust approach of WBE to detect trends in SARS-CoV-2 spread and helps contribute to pandemic management.


Assuntos
SARS-CoV-2 , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , Humanos , COVID-19 , Reprodutibilidade dos Testes , RNA , Emirados Árabes Unidos/epidemiologia , Águas Residuárias/virologia
13.
Sci Total Environ ; 886: 163965, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37156389

RESUMO

This study delves into the microbial community complexity and its role in self-forming dynamic membrane (SFDM) systems, designed to remove nutrients and pollutants from wastewater, by means of the analysis of Next-Generation Sequencing (NGS) data. In these systems, microorganisms are naturally incorporated into the SFDM layer, which acts as a biological and physical filter. The microorganisms present in an innovative and highly efficient aerobic, electrochemically enhanced, encapsulated SFDM bioreactor were studied to elucidate the nature of the dominant microbial communities present in sludge and in encapsulated SFDM, patented as living membrane® (LM) of the experimental setup. The results were compared to those obtained from the microbial communities found in similar experimental reactors without an applied electric field. The data gathered from the NGS microbiome profiling showed that the microbial consortia found in the experimental systems are comprised of archaeal, bacterial, and fungal communities. However, the distribution of the microbial communities found in e-LMBR and LMBR had significant differences. The results showed that the presence of an intermittently applied electric field in e-LMBR promotes the growth of some types of microorganisms (mainly electroactive microorganisms) responsible for the highly efficient treatment of the wastewater and for the mitigation of the membrane fouling found for those bioreactors.


Assuntos
Microbiota , Purificação da Água , Águas Residuárias , Esgotos/microbiologia , Reatores Biológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Membranas Artificiais
14.
Membranes (Basel) ; 13(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37233547

RESUMO

Thin-film nanocomposite (TFN) membranes are the third-generation membranes being explored for nanofiltration applications. Incorporating nanofillers in the dense selective polyamide (PA) layer improves the permeability-selectivity trade-off. The mesoporous cellular foam composite Zn-PDA-MCF-5 was used as a hydrophilic filler in this study to prepare TFN membranes. Incorporating the nanomaterial onto the TFN-2 membrane resulted in a decrease in the water contact angle and suppression of the membrane surface roughness. The pure water permeability of 6.40 LMH bar-1 at the optimal loading ratio of 0.25 wt.% obtained was higher than the TFN-0 (4.20 LMH bar-1). The optimal TFN-2 demonstrated a high rejection of small-sized organics (>95% rejection for 2,4-dichlorophenol over five cycles) and salts-Na2SO4 (≈95%) > MgCl2 (≈88%) > NaCl (86%) through size sieving and Donnan exclusion mechanisms. Furthermore, the flux recovery ratio for TFN-2 increased from 78.9 to 94.2% when challenged with a model protein foulant (bovine serum albumin), indicating improved anti-fouling abilities. Overall, these findings provided a concrete step forward in fabricating TFN membranes that are highly suitable for wastewater treatment and desalination applications.

15.
Sci Total Environ ; 890: 164360, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37220807

RESUMO

The World Health Organization (WHO) recognizes antimicrobial resistance (AMR) as a serious threat to human health. Scientists warn that the world is approaching a post-antibiotic era, in which antibiotics will be ineffective, and AMR infections may become a leading cause of death worldwide. Wastewater treatment plants (WWTPs) have been identified as hotspots for the spread and reproduction of AMR. This review focuses on the fate of AMR in WWTPs and advanced water treatment processes, highlighting their removal efficiencies and limitations. Additionally, methods for monitoring AMR in WWTPs and aquatic environments are discussed. Monitoring of AMR in wastewater is crucial for tracking its presence and spread to the environment. Advanced AMR treatment processes such as membrane bioreactors (MBRs), vermifiltration (VF), advanced oxidation processes (AOPs), and membrane filtration processes (MFPs) are discussed and compared.


Assuntos
Antibacterianos , Purificação da Água , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Águas Residuárias , Oxirredução , Reatores Biológicos
16.
Int J Biol Macromol ; 238: 124340, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37028633

RESUMO

Bioactive compounds can be protected from degradation through encapsulation, increasing their bioavailability and shelf life. Spray drying is an advanced encapsulation technique mainly used for the processing of food-based bioactives. In this study, Box-Behnken design (BBD)-based response surface methodology (RSM) was used to study the effects of combined polysaccharide carrier agents and other spray drying parameters on encapsulating date fruit sugars obtained from a supercritical assisted aqueous extraction. The spray drying parameters were set at various levels: Air inlet temperature (150-170 °C), feed flow rate (3-5 mL/min), and carrier agent concentration (30-50 %). Under the optimized conditions (inlet temperature of 170 °C, the feed flow rate of 3 mL/min, and carrier agent concentration of 44 %), a maximum sugar powder yield of 38.62 % with 3.5 % moisture, 18.2 % hygroscopicity and 91.3 % solubility was obtained. The tapped density and particle density of the dried date sugar were estimated as 0.575 g cm-3 and 1.81 g cm-3, respectively, showing its potential for easy storage. In addition, scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis revealed better microstructural stability of the fruit sugar product, which is essential for commercial applications. Thus, the hybrid carrier agent system (maltodextrin and gum arabic) can be considered a potential carrier agent for producing stable date sugar powder with longer shelf-life and desirable characteristics in the food industry.


Assuntos
Goma Arábica , Phoeniceae , Frutas , Goma Arábica/química , Extratos Vegetais , Polissacarídeos/química , Pós/química , Açúcares
17.
Sci Total Environ ; 871: 161963, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737022

RESUMO

The treatability of synthetic textile wastewater containing model dyes, such as reactive black and direct black dye (25.0 ± 2.6 mgdye/L), with chemical oxygen demand (COD, 1000 ± 113 mg/L), ammonia­nitrogen (NH3-N, 140 ± 97 mg/L) and sulphate ions (SO42-, 1357 ± 10.86 mg/L) was investigated in this study using an innovative living membrane bioreactor (LMBR) using an encapsulated self-forming dynamic membrane (ESFDM). The key advantage of ESFDMBR is the self-forming of the biological filtering layer protected between two meshes of inert robust and inexpensive material. A laboratory scale bioreactor (BR) equipped with a filtering unit mounting polyester meshes with a pore size of 30 µm, operated at an influent flux of 30 LMH was thus used. After the formation of the biological living membrane (LM), the treatment significantly reduced COD and DOC concentrations to the average values of 34 ± 10 mg/L and 32 ± 7 mg/L, corresponding to reduction efficiencies of 96.0 ± 1.1 % and 94 ± 1.05 %, respectively. Throughout the LMBR operation, the colours were successfully removed from synthetic textile wastewater with an overall removal efficiency of about 85.0 ± 1.8 and 86.0 ± 1.9 % for direct and reactive dyes, respectively. In addition, the proposed system was also found effective in affording removal efficiency of ammonia (NH3) of 97 ± 0.5 %. Finally, this treatment afforded circa 40.7 ± 5.8 % sulphate removal, with a final concentration value of 805 ± 78.61 mg/L. The innovative living membrane, based on an encapsulated self-forming dynamic membrane allows a prolonged containment of the membrane fouling, confirmed by investigating the concentration of membrane fouling precursors and the time-course variations of turbidity and transmembrane pressure (TMP). Those final concentrations of wastewater pollutants were found to be below the limits for admission of the effluents in public sanitation networks in Italy and Tunisia, as representative countries for the regulation in force in Europe and North Africa. In conclusion, due to the low costs of plant and maintenance, the simple applicability, the rapid online implementation, the application of LMBR results in a promising method for the treatment of textile wastewater.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Amônia , Membranas Artificiais , Reatores Biológicos , Têxteis , Corantes , Tunísia
18.
Chem Eng J ; 453: 139750, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36267422

RESUMO

Quantitative RT-PCR (qRT-PCR) is the most commonly used diagnostic tool for SARS-CoV-2 detection during the COVID-19 pandemic. Despite its sensitivity and accuracy, qRT-PCR is a time-consuming method that requires expensive laboratories with highly trained personnel. In this work, on-site detection of SARS-CoV-2 in municipal wastewater was investigated for the first time. The wastewater was unprocessed and did not require any prefiltration, prior spiking with virus, or viral concentration in order to be suitable for use with the biosensor. The prototype reported here is a reduced graphene oxide (rGO)-based biosensor for rapid, sensitive and selective detection of SARS-CoV-2. The biosensor achieved a limit of detection (LOD) of 0.5 fg/mL in phosphate-buffered saline (PBS) and exhibited specificity when exposed to various analytes. The response time was measured to be around 240 ms. To further explore the capabilities of the biosensor in real clinical and municipal wastewater samples, three different tests were performed to determine the presence or absence of the virus: (i) qRT-PCR, (ii) a rapid antigen-based commercially available test (COVID-19 Test Strips), and (iii) the biosensor constructed and reported here. Taken together, our results demonstrate that a biosensor that can detect SARS-CoV-2 in clinical samples as well as unfiltered and unprocessed municipal wastewater is feasible.

19.
Crit Rev Biotechnol ; 43(7): 971-981, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35968911

RESUMO

Colloidal gas aphrons (CGAs) are highly stable, spherical, micrometer-sized bubbles encapsulated by surfactant multilayers. They have several intriguing properties, including: high stability, large interfacial area, and the ability to maintain the same charge as their parent molecules. The physical properties of CGAs make them ideal for biotechnological applications such as the recovery of a variety of: biomolecules, particularly proteins, yeast, enzymes, and microalgae. In this review, the bio-application of CGAs for the recovery of natural components is presented, as well as: experimental results, technical challenges, and critical research directions for the future. Experimental results from the literature showed that the recovery of biomolecules was mainly determined by electrostatic or hydrophobic interactions between polyphenols and proteins (lysozyme, ß-casein, ß-lactoglobulin, etc.), yeast, biological molecules (gallic acid and norbixin), and microalgae with CGAs. Knowledge transfer is essential for commercializing CGA-based bio-product recovery, which will be recognized as a viable technology in the future.


Assuntos
Microbolhas , Saccharomyces cerevisiae , Tensoativos/química , Proteínas , Biotecnologia , Nucleotidiltransferases
20.
PLoS One ; 17(9): e0274961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36137134

RESUMO

Coronavirus disease 2019 (COVID-19) was first identified in respiratory samples and was found to commonly cause cough and pneumonia. However, non-respiratory symptoms including gastrointestinal disorders are also present and a big proportion of patients test positive for the virus in stools for a prolonged period. In this cross-sectional study, we investigated viral load trends in stools and nasopharyngeal swabs and their correlation with multiple demographic and clinical factors. The study included 211 laboratory-confirmed cases suffering from a mild form of the disease and completing their isolation period at a non-hospital center in the United Arab Emirates. Demographic and clinical information was collected by standardized questionnaire and from the medical records of the patient. Of the 211 participants, 25% tested negative in both sample types at the time of this study and 53% of the remaining patients had detectable viral RNA in their stools. A positive fecal viral test was associated with male gender, diarrhea as a symptom, and hospitalization during infection. A positive correlation was also observed between a delayed onset of symptoms and a positive stool test. Viral load in stools positively correlated with, being overweight, exercising, taking antibiotics in the last 3 months and blood type O. The viral load in nasopharyngeal swabs, on the other hand, was higher for blood type A, and rhesus positive (Rh factor). Regression analysis showed no correlation between the viral loads measured in stool and nasopharyngeal samples in any given patient. The results of this work highlight the factors associated with a higher viral count in each sample. It also shows the importance of stool sample analysis for the follow-up and diagnosis of recovering COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Antibacterianos , COVID-19/diagnóstico , COVID-19/epidemiologia , Estudos Transversais , Humanos , Masculino , Nasofaringe , RNA Viral/genética , Sistema do Grupo Sanguíneo Rh-Hr , Emirados Árabes Unidos/epidemiologia , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...